
Study and Implementation of
Age-Fitness Pareto Optimization in Genetic Algorithms

Vishal Uttamchand Sancheti, B000877378
Department of Computer Science

Dalhousie University
Halifax, NS, Canada B3H 4R2

vs488310@dal.ca

Abstract— Premature convergence is one of the common
problems in genetics algorithms. Based on the previous
research one of the effective ways to solve this problem is
to introduce ”Age” as an explicit optimization criterion. In
this project, I try to study and implement one such approach
called Age-Fitness Pareto Optimization [1]. Along with the
implementation, I compare and study the results with standard
genetic programming. During implementation, I selected an
unbalanced dataset and performed various hyper tuning on
model parameters to improve performance for the selected
dataset.

I. INTRODUCTION

A genetic algorithm is a method to identify the solution
for a given problem. Initially, a given number of solutions
known as individuals are initialized that collectively form
population, each individual is then evaluated for fitness,
based on fitness at each generation new individuals are
introduced by crossover and mutation this repeats for
several generations till termination condition is reached. The
termination condition generally is when required fitness is
reached or the maximum number of generations reached.

A common problem in many applications of genetic
algorithms is when the progress of the algorithm stagnates
and solutions stop improving [2]. Expending additional
computational effort in the evolution often fails to make any
substantial progress. This problem is known as premature
convergence [3].

The previous study suggests various solutions to solve
premature convergence. The most common solution is to
run the algorithm for many generations or to randomize
and restart the algorithm. Both the solutions are effective
but, increase the cost. The method suggested in Age-Fitness
Pareto Optimization [1] is a modern approach that uses
two-dimensional Age-Fitness Pareto space. The main object
of this method is to achieve high fitness for low age.

II. RELATED WORK

The key factor to avoid premature convergence is to
maintain diversity in a population. Early methods use heavy
mutation to maintain diversity but this resulted in more

damage compared to benefits. Some modern work deal with
this by suggesting alternate methods such as deterministic
crowding [4] replacing individual by similar performing
descendent, hierarchical fair competition [5] maintaining
subpopulation for different fitness range, and Age-Layered
Population Structure (ALPS) [6] maintaining subpopulation
for different genotypic age range.

All the previously suggested methods deal with reducing
premature convergence for the existing algorithm. The
Age-Fitness Pareto method proposed by researchers is a
different take inspired by ALPS and uses genotypic age,
single population, and tournament selection to identify the
best solution.

III. METHODS
In this project, I implemented the Age-Fitness Pareto

optimization algorithm and compared results with a standard
genetic algorithm for a poker hand classification dataset [7].

A. Dataset
The dataset is a collection of the hand of five cards drawn

out of a standard deck of 52 playing cards. The dataset
represents each card with suit and rank thus, consists of
ten predictive attributes and one goal attribute. The goal
attribute is a class of 10 possible values representing 10
possible poker hands. The training dataset class distribution
is as shown in Table I.

TABLE I
DATASET ANALYSIS

Class Poker Hand Instances
0 Nothing in hand 501209
1 One pair 422498
2 Two pairs 47622
3 Three of a kind 21121
4 Straight 3885
5 Flush 1996
6 Full house 1424
7 Four of a kind 230
8 Straight flush 12
9 Royal flush 3



Based on the poker game the dataset statistics are as
shown in Table II. We can observe that the probability of
Nothing, One pair, Two pair, and Three of a kind is high
compared to others thus, any algorithm will identify them
better.

TABLE II
DATASET STATISTICS

Poker Hand # of hands Probability
Royal Flush 4 0.00000154

Straight Flush 36 0.00001385
Four of a kind 624 0.0002401

Full house 3744 0.00144058
Flush 5108 0.0019654

Straight 10200 0.00392464
Three of a kind 54912 0.02112845

Two pairs 123552 0.04753902
One pair 1098240 0.42256903
Nothing 1302540 0.50117739

B. Algorithm

The implementation is a modified version of the algorithm
suggested in [1]. The various components for the algorithm
are:

1) Individual: Individuals are represented using linear
genetic programming and each individual is a set of
instructions.

2) Fitness: The fitness is the calculated average of
class-wise accuracy.

3) Age: The age represents the genotypic age of an
individual. The genotypic age of the new individual is
one, and the genotypic age of a derived individual is the
youngest age of part of the genotype.

4) Execution: Sampling is done on training dataset for
every five generations with uniform probability and without
replacement. The sample is also oversampled to make a
uniform distribution.

For given population size, individuals are initialized
with different sizes of the random instruction set. These
individuals are evaluated against a sample of training
dataset and rank them against age-fitness Pareto to identify
dominated individuals.

For each generation, one new random individual and
one new mutated individual is added and the population
is checked against max population size and if exceeds
dominated individuals are removed.

The algorithm runs for max number of generations with
termination condition where it terminates if desired fitness
is reached.

C. Experiment
The main aim of the experiment is to compare standard

genetic programming and Age-Fitness Pareto optimization.
To establish common grounds for comparison we use a
similar poker dataset to find a multi-class classifier to
classify poker hands for a given set of suits and ranks.

Parameters used in standard genetic programming are as
shown in Table III.

TABLE III
STANDARD GP PARAMETERS

Population Size 100
Sample Size 100

Instruction Set Size 48 to 256
Output Registers 10
Gap Percentage 30%

Crossover Probability 80%
Mutation Probability 30%

Parameters used in age-fitness pareto optimization are as
shown in Table IV.

TABLE IV
AGE-FITNESS PARETO OPTIMIZATION PARAMETERS

Initial Population Size 95
Target Population Size 100

Sample Size 100
Instruction Set Size 48 to 256

Output Registers 10
Crossover Probability 80%
Mutation Probability 30%

IV. RESULTS
Experiments were performed several times to identify a

common pattern for each algorithm and one such result for
both is selected for the comparison.

A. Standard Genetic Programming
The method mostly failed to converge to global optima

but, at times reached global optima in few generations. The
selected result is from a case where it failed to reach global
optima and converged to local optima.

The training statistics for the result are as shown in Table
V and Fig 1. We can observe it reached fitness of 0.18 in
1000 generations and cost us 1min and 46s.

TABLE V
TRAINING STATISTICS

Generations 1000
Fitness 0.18

CPU time 1min 46s
Wall time 1min 47s



Fig. 1. Fitness-Generation Graph

The best classifier identified in training when applied
on test dataset the result are as shown in Table VI. We
can observe it classifies with an accuracy of 2.85% and
identifies only the first two classes.

TABLE VI
TEST STATISTICS

Accuracy 2.85%
Detection Rate (DR) 10.11%

Class 1 DR 62.35%
Class 2 DR 38.78%
Class 3 DR 0.0%
Class 4 DR 0.0%
Class 5 DR 0.0%
Class 6 DR 0.0%
Class 7 DR 0.0%
Class 8 DR 0.0%
Class 9 DR 0.0%

Class 10 DR 0.0%

B. Age-Fitness Pareto Optimization

The method generally converges to global optima but,
at times it needed more generations. The selected result is
from a case where it reached global optima within 1000
generations.

The training statistics for the result are as shown in Table
VII, Fig. 2, and Fig. 3. We can observe it reached fitness of
0.25 in 1000 generations and cost us 30.2s.

TABLE VII
TRAINING STATISTICS

Generations 409
Fitness 0.25

Age 293
CPU time 30.2 s
Wall time 30.4 s

Fig. 2. Fitness-Generation Graph

Fig. 3. Age-Generation Graph

The best classifier identified in training when applied
on test dataset the result are as shown in Table VIII. We
can observe it classifies with an accuracy of 0.81% and
identifies only the first four classes.

TABLE VIII
TEST STATISTICS

Accuracy 0.81%
Detection Rate (DR) 8.9%

Class 1 DR 1.52%
Class 2 DR 44.99%
Class 3 DR 9.79%
Class 4 DR 32.87%
Class 5 DR 0.0%
Class 6 DR 0.0%
Class 7 DR 0.0%
Class 8 DR 0.0%
Class 9 DR 0.0%
Class 10 DR 0.0%

V. CONCLUSIONS

In conclusion, the Age-Fitness Pareto Optimization can
solve premature convergence and be cost-effective but, at
times the standard genetic programming performs well
when it avoids premature convergence.

Overall, the concept of introducing age as an explicit
optimization criterion can increase performance as young
and well-performing individuals are not replaced with old
and high-performing individuals.



VI. ACKNOWLEDGMENT

The project could not have been possible without the
guidance of Dr. Malcolm Heywood.

A debt of gratitude is also owed to the researchers, Dr.
Michael Schmidt and Dr. Hod Lipson, who drafted the
implemented approach in their research paper.

Finally, I would like to thank my classmates at Dalhousie
University for the Course CSCI6506, Summer’21, who
always shared information and asked questions.

REFERENCES

[1] M. Schmidt and H. Lipson, “Age-fitness pareto optimization,” in
GECCO, vol. 8, 01 2010, pp. 543–544.

[2] G. Murphy and C. Ryan, Manipulation of Convergence in Evolutionary
Systems. Springer US, 01 1970, pp. 33–52.

[3] C. Ryan, “Reducing premature convergence in evolutionary algorithms,”
02 1970.

[4] S. Mahfoud, “Niching methods for genetic algorithms,” vol. 51, 05
1995.

[5] J. Hu, E. Goodman, K. Seo, Z. Fan, and R. Rosenberg, “The hier-
archical fair competition (hfc) framework for sustainable evolutionary
algorithms,” Evolutionary computation, vol. 13, pp. 241–77, 02 2005.

[6] G. Hornby, A Steady-State Version of the Age-Layered Population
Structure EA. Springer US, 11 2009, pp. 87–102.

[7] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml


